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Magnetic Flux and Flux Density

We are already familiar with the concept of electric flux:
U = /D -dS Coulombs 1)

in which the electric flux density in free spaceis: D =¢E C/m”

. and where the free space permittivity is €0 = 8.854 x 107 F/m

In a similar way, we can define the magnetic flux in units of Webers (Whb):
P = /B -dS  \Webers ®)
in which the magnetic flux density (or magnetic induction) in free space is: B = poH Wb/m?

and where the free space permeability is Lo = 4m X 100" H /m
This is a defined quantity, having to do with the definition of the ampere (we will explorethis later).

(3)




Magnetic Flux and Flux Density

If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

\Ijnet — %D - dS = Qenc

. If the same were to be done with magnetic flux density, we would find:

q)neth-dSO
S

The implication is that (for our purposes) there are no magnetic charges -- specifically, no point
sources of magnetic field exist. A hint of this has already been observed, in that magnetic field lines

always close on themselves.
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Example: Magnetic Flux Within a Coaxial Line

Consider a length d of coax, as shown here. The magnetic field strength between conductors is:

I
H, = —— <o0<b
= 5 (a <p<Db)
pol
and so: B=uH=——a
Mo 27 p b

The magnetic flux is now the integral of B over the
flat surface between radii a and b, and of length d along z:

d byl
@:/B-dS:ff ——ay -dpdzay
s 0 Ja 27p
b

pold |

27 a
The coax line thus “stores” this amount of magnetic flux in the region between conductors.

This will have importance when we discuss inductance in a later lecture. 12/12/2017 5
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Maxwell’s Equations for Static Fields

We may rewrite the closed surface integral of B using the divergence theorem, in which the
right hand integral is taken over the volume surrounded by the closed surface:

S v

Because there is no isolated magnetic charge, the result is zero

V-B=0 ()

This result is known as Gauss’ Law for the magnetic field in point form.
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Maxwell’s Equations for Static Fields

It has just been demonstrated from Ampere’ s Circuital Law that:

§H-dz=| =jJ-ds

enclosed

Applying the Stoke’s theory
. .-.§H-df=j(vXH)-ds
= j J-ds

.....which is in fact one of Maxwell’ s equations for static fields:

VxH=] )

This is Ampere’ s Circuital Law in point form.
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Maxwell’s Equations for Static Fields

We already know that for a static electric field:

¢E-dL =0 ©

Thismeansthat: | V x E = 0 (applies to a static electric field)

Recall the condition for a conservative field: that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has zero curl at all points over which the field is defined.
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We have now completed the derivation of Maxwell’ s equations for no time variation. In point form,

these are:

where, in free space:

Maxwell’ s Equations for Static Fields

V-D = p,
VXE= 0
VxH=]
V:-B=0

D = ¢E

BZ[,LoH

Gauss’ Law for the electric field
Conservative property of the static electric field
Ampere’ s Circuital Law

Gauss’ Law for the Magnetic Field

Significant changes in the above four equations will
occur when the fields are allowed to vary with time, as
we’ll see later.
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Maxwell” s Equations in Large Scale Form

The divergence theorem and Stokes theorem can be applied to the previous four point form
equations to yield the integral form of Maxwell’ s equations for static fields:

- %D-dS = (0 = [ pudv Gauss’ Law for the electric field
S vol

f E-dL =0 Conservative property of the static electric field

%H -dL =1 = f.] - dS Ampere’ s Circuital Law
S

f B-dS =0 Gauss’ Law for the magnetic field
S
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Magnetic Boundary Conditions
To find the relationship between B,Hand M A,
Region 1:

Ah/?2
Boundary S % fAh /
Region 2: U,

To find normal componentof B and H at the boundary
Consider a small cylinderas Ah—>0 and use §§ .ds=0

§>§-d_s= B, As—B, As=0
B,=8B,, =>uH, =1H,,

B/H

(7)
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Magnetic Boundary Conditions

Ny = an21

B/

To find tangential component of Band H atthe boundary

Al :
/ S
Consider a closed abcdas Ah—0 ; h/:
d use §ﬁ dl =1 ~Lg
and u -al = )
iy i et
.

1\

H Al-H, Al =1 z
Hy—H, =K é‘x
y
where K is perpendicular to the directions of Hand H -
IfK=0: H.=H. or —'="2}] @
U4 uq 12/12/2017 12
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Motivating the Magnetic Field Concept:
Forces Between Currents

Magnetic forces arise whenever we have charges in motion. Forces between current-carrying wires
present familiar examples that we can use to determine what a magnetic force field should look like:

Here are the easily-observed facts:

zero force

®1

How can we describe a force field around wire 1 that can be used to determine the forcg.on wire 2?




Magnetic Field

The geometry of the magnetic field is set up to correctly model forces between currents. The
magnetic field intensity, H, circulates around its source, I, in a direction most easily determined by
the right-hand rule: Right thumb in the direction of the current, fingers curl in the direction of H

I, I Il 12

H from wire 1 at the
/location of wire 2

\\ H P ®
H P ®
/

H from wire 1 at the
/location of wire 2

) Repulsive force in th

Attractive force in the Yy obuBIve Joree In the

direction given by I, x H direction given by I, x H
Note that in the third case (perpendicular currents), I, is in the same direction as H, so that their cross
product (and the resulting force) is zero. The actual force computation involves a different field

quantity, B, which is related to H through B = p,H in free space. This will be taken up in a later
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Force on a Moving Point Charge

In an electric field, the force on a charged particle is given by

F.=0F

experience a force whose magnitude is

Where v is the velocity, B is the flux density

by superposition,

F=F +F, or

=

- Q(E +vxB)

Also known as Lorentz force equation.

©)

A charged particle in motion in a magnetic field of flux density B is found experimentally to

(10)

The force on a moving particle arising from combined electric and magnetic fields is obtained easily

(1)
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Force on a Moving Point Charge

Force on charge in the influence of fields:

Charge — =Se Combination
Condition E Field B Field Ead B
Stationary QE - QE
Moving QE QvxB Q(E T g)

» The electric force is usually in the direction of the electric field while,
the magnetic force is perpendicular to the magnetic field

The electric force acts on a charged particle whether or not it is
moving, while the magnetic force acts moving charged particle only
The electric force expends energy in displacing a charged particle,
while the magnetic one does no work when the particle is displaced
because it is perpendicular to the velocity




Force on a Moving Point Charge

D8. 4. The pointcharge Q = 18 nC hasa velocity of 5 x 10° m/s in the direction

a, = 0.60a, +0.75a, 40.30a,. Calculate the magnitude of the force exerted on || '

the charge by the field: (a) B = —3a, 4+ 4a, 4 6a; mT; (b) E = —3a, 4+ 4a, +
6a, kV/m; (c) B and E acting together.

Ans. 660 uN; 140 uN: 670 uN
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Force on a Differential Current Element

The force on a charged particle moving through a steady magnetic field may be written as the
differential force exerted on a differential element of charge,

dF =dQvxB

. ~dQ=p,dv and J=p,v
~.dF =JxBdv

We saw in Chapter 8, partl that Jdvmay be interpreted as a differential current element; that is,
Jdv=KdS = 1dL

and thus the Lorentz force equation may be applied to a differential current filament,

~dFE =1d/xB
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Force on a Differential Current Element
- F = § Id¢/xB
= - §§de

(12)

One simple result is obtained by applying (12) to a straight conductor in a uniform magnetic field,
E=IlLXBb
The magnitude of the force is given by the familiar equation

F =BILsIng (13)

where 6@ is the angle between the vectors representing the direction of the current flow and the
direction of the magnetic flux density.
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Force on a Differential Current Element

Ex. 8.3: A square conductor current loop
Is located in z = 0 plane with the edges
given by the coordinates (1,0,0), (1,2,0), Free space

(3,0,0) and (3,2,0) carrying a current of 2

mA in anti clockwise direction. A

filamentary current carrying conductor of ‘|_1 5 A
infinite length along the y axis carrying a
current of 15 A in the —y direction. Find
the force on the square loop. (1,0,0)

(1,2, 0)

(3.0,0) | _/’2 mA
2
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Force on a Differential Current Element
s
Solution:
(1,2,0) (3,2,0)
I1 Y 15A I
¥ 2mA 1t
. i :
271X 271X Z<.> RS AR
S AR -6 (1,0,0) (3,0,0)
® s dnE e
X
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Force on a Differential Current Element

Hence:

F=§1,dixB, =—1,§B, xd

R e RS
F:—2><103><3><10{_“ ;Xd@ j %xdy}?
x=1 y=0

IE X —6X109|:|n XE’+% y‘z(— ),Z)-|- In X‘2§/+ y‘O

:—6><109{(In3)§/—§f<+(lnéj§/+2f<}

(1,2,0)

(3,2,0)

l, Y15 A
Y 2 mA

bl

Ay

-

a a
AN e
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Force on a Differential Current Element

A(L, 1, )and: (a) B(2, 1, 1); (b) B(3, 5, 6).

. Ans. —48ay + 36a; mN; 12a, — 216a, + 168a; mN

D8.5. The field B = —2a, + 3a, + 4a, mT is present in free space. Find the ‘
vector force exerted on a straight wire carrying 12 A in the a4  direction, given |

12/12/2017
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Force Between Differential Current Elements

z

12/12/2017
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Force Between Differential Current Elements

We have : dF = I1dl x B (N)

The magnetic field at point P, due to the filamentary current I,dl, :

= LdExa
dH, = ———>% (&/m)
i
- : 1,dl, x &
dldE )= I dE o=t he
47R,,
(dF, )= 1,dI. x§“°'1d|_lx % afs
2 25542 { 47Z'R122 s L 2

where dF, is the force due to 1,dl, and due to the magnetic field of wire | w2z 2

Ty . TR —




Force Between Differential Current Elements

o w1 dl X &,
i ;f 4R, ,°

Integrate:

Ifz 2 /12|71T|2§ (éRTQX 2d|1) X d|_2
12

For surface current :

12/12/2017
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Force Between Differential Current Elements

D8. 6. Two differential current elements. I[;AL; = 3 x 10—53}: A-m at |
P,(1,0,0)and L AL, = 3 x 10~%(—0.5a, +0.4a,+0.3a,) A-mat P,(2, 2, 2), |
are located in free space. Find the vector force exerted on: (a) [, AL> by I; AL;:
(b) I ALy by L AL,.

. Ans. (—1.333a, + 0.333ay — 2.67a;)10~%" N; (4.67ay + 0.667a;)10~° N
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Now let us consider a second line of current parallel to the first.

dF, =1,dL, xB,

The magnetic flux density B, for an infinite length line of current is recalled from equation

to be |
Hy 1y

2710

By inspection of the figure we see that p =y and a, = -a,. Inserting this in the
above equation and considering that dL, = dza,, we have

| |
F,=[1,0L,xB, = [1,dza,x 2224, = [1,dza, x£L-a,

2710 2710
B %(—ay)jdz

Magnetic Force between Two current Elements

The force dF,, from the magnetic field of line 1 acting on a differential section of line 2 is

L

)

12/12/2017

29




Magnetic Force between Two current Elements

To find the total force on a length L of line 2 from the field of line 1, we must integrate dF,, from +L to
0. We are integrating in this direction to account for the direction of the current.

F, :%(—ay)jdz L 12
L

ILlOI I L L _F;IZ

This gives us a repulsive force. >

Had we instead been seeking F,,, the magnetic force acting on line 1 from the / ¢
field of line 2, we would have found F,;, = -F,.
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Magnetic Force between Two current Elements

In the more general case where the two lines are not parallel, or not straight, we could use the Law

of Biot-Savart to find B, and arrive at

,Uol |J'J'd|—2x(g|2—1xaﬂ_2)

This equation is known as Ampere’s Law of Force between a pair of current carrying circuits and is

analogous to Coulomb’s law of force between a pair of charges.

12/12/2017
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Magnetic Force between Two current Elements

Example: Find force per meter between two parallel infinite conductor carrying

current, I Ampere in opposite direction and separated at a distance d meter.
z

Solution:

B, at position conductor 2

N

=1 T @l B _)A(/Uoll

B,=uH., = S
2 = Moy /Uozm,c

27d

A

A

Hetice:
R W & R e AN NS 08
U PPNy 7/}
= — N/m
YHo 2 y 2 ( ) 12/12/2017 32




Self Inductance

Inductance is the last of the three familiar parameters from
circuit theory that we are defining in more general terms.

We can define the inductance (or self-inductance) as
the ratio of the total flux linkages to the current which

they link,
A NO
I
where A (lambda) is the total flux linkage of the inductor

L

Henry Y

Magnetic

From circuit theory the induced potential across a wire wound

vL=|_ﬂ
dt

where of the coill,

a

such as

flowing through the

12/12/2017
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Self Inductance

1

In a capacitor, the energy is stored in the electric field : W_ ==CV 2

In an inductor, the energy is stored in the magnetic field,

. as suggested in the diagram : Magnetic
t:to t:to - .".. :‘“_..------..

W, = [V ldt = I(Lﬂj dt
t=0 t=0 dt

t=t, 1
=j|_|d|=—|_|2 (Joule) SRy
t=0 2
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Example: Obtain the expression for self inductance per meter of the coaxial cable when the
current flow is restricted to the surface of the inner conductor and the inner surface of the outer

Self Inductance

conductor as shown in the diagram.

Solution:

The @ will exist only between a and b and
will link all the current |

& % . ? - Ej (uH )(Idrcdz)

1 (dr.dz)
27t I

Cc

QD e T

1
J
Hn b
27T a

12/12/2
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Self Inductance

Example: Obtain the self inductance of the long solenoid shown in the diagram.

Solution: Assume all the flux @ links all N turns and that B z

does not vary over the cross section area of the solenoid £luks

~)
N

A =®N = B(za?)N ==
. We have B = uH E% i_ T{
A= Yo N = (N | % 1R
| T N
L A N’ o S
— N m— —




Self Inductance

Example: Obtain the self inductance of the toroid shown in the diagram.

)
|

Mean path

Solution:

Cross sectional area

S 270 e \ “«“‘" \. N eag Feromagnetic core
I \ " s ~r1 / I “ave
uN?S N~ \

= 7

where b - mean radius
S -toroidal crosssectionalarea S
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Magnetic Energy Density

A
We have : L = = Henry ‘
1 1 A 1 '---..----"‘
W ==LI°’==—1°==Al Joule
2 2 I 2 N turns
: SEas : SR 1 1
Consider a toroidal ring : The energy in the magnetic field ;W _ = > ONI = > BSNI
1 _ NI
Multiplying the numerator and denominator by 2zb : Wm = E B % (S Zﬂb)
where %z H and (S2zb) isthe volumeV of the toroid
12/12/2017
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Magnetic Energy Density

Hence : A% =§BHV e e B = e e

g i
In vector form : W = = B-H
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Magnetic Energy Density

Example: Derive the expression for stored magnetic energy in a coaxial cable with the length |
and the radius of the inner conductor a and the inner radius of the outer conductor is b. The

permeability of the dielectricis . .

Solution:
e
27r
. - w? o1
W, _EjvyH e jvrzdv

12/12/2
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