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Magnetic Flux and Flux Density

We are already familiar with the concept of electric flux:

Coulombs

in which the electric flux density in free space is:

In a similar way, we can define the magnetic flux in units of Webers (Wb):

Webers

in which the magnetic flux density (or magnetic induction) in free space is:

and where the free space permittivity is 

and where the free space permeability is

This is a defined quantity, having to do with the definition of the ampere (we will explore this later).

(1)

(2)

(3)
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Magnetic Flux and Flux Density

If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

If the same were to be done with magnetic flux density, we would find:

The implication is that (for our purposes) there are no magnetic charges -- specifically, no point

sources of magnetic field exist. A hint of this has already been observed, in that magnetic field lines

always close on themselves.
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Example:  Magnetic Flux Within a Coaxial Line

dB

Consider a length d of coax, as shown here.  The magnetic field strength between conductors is:

and so:

The magnetic flux is now the integral of B over the 

flat surface between radii a and b, and of length d along z: 

The result is:

The coax line thus “stores” this amount of magnetic flux in the region between conductors.  

This will have importance when we discuss inductance in a later lecture. 12/12/2017 5



Maxwell’s Equations for Static Fields

We may rewrite the closed surface integral of B using the divergence theorem, in which the 

right hand integral is taken over the volume surrounded by the closed surface:

Because there is no isolated magnetic charge, the result is zero

This result is known as Gauss’ Law for the magnetic field in point form.

(4)
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Maxwell’s Equations for Static Fields

It has just been demonstrated from Ampere’s Circuital Law that:

…..which is in fact one of Maxwell’s equations for static fields:

This is Ampere’s Circuital Law in point form.

  dsJIdH enclosed

Applying the Stoke’s theory








dsJ

dsHdH

               

)(

(5)
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Maxwell’s Equations for Static Fields

We already know that for a static electric field:

This means that:

Recall the condition for a conservative field:  that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has  zero curl at all points over which the field is defined.

(applies to a static electric field)

(6)
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Maxwell’s Equations for Static Fields

We have now completed the derivation of Maxwell’s equations for no time variation. In point form, 

these are:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the Magnetic Field

where, in free space:
Significant changes in the above four equations will

occur when the fields are allowed to vary with time, as

we’ll see later.
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Maxwell’s Equations in Large Scale Form

The divergence theorem and Stokes’ theorem can be applied to the previous four point form

equations to yield the integral form of Maxwell’s equations for static fields:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the magnetic field
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Motivating the Magnetic Field Concept: 

Forces Between Currents

How can we describe a force field around wire 1 that can be used to determine the force on wire 2?

Magnetic forces arise whenever we have charges in motion.  Forces between current-carrying wires 

present familiar examples that we can use to determine what a magnetic force field should look like: 

Here are the easily-observed facts:
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Magnetic Field
The geometry of the magnetic field is set up to correctly model forces between currents. The

magnetic field intensity, H, circulates around its source, I1, in a direction most easily determined by

the right-hand rule: Right thumb in the direction of the current, fingers curl in the direction of H

Note that in the third case (perpendicular currents), I2 is in the same direction as H, so that their cross

product (and the resulting force) is zero. The actual force computation involves a different field

quantity, B, which is related to H through B = H in free space. This will be taken up in a later

lecture. Our immediate concern is how to find H from any given current distribution.
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EQFe 

BQFm  v

me FFF   BEQF  vor

Also known as Lorentz force equation. 

Force on a Moving Point Charge

The force on a moving particle arising from combined electric and magnetic fields is obtained easily 

by superposition,

In an electric field, the force on a charged particle is given by

A charged particle in motion in a magnetic field of flux density B is found experimentally to

experience a force whose magnitude is

Where v is the velocity, B is the flux density

(9)

(10)

(11)
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EQ

BQ v

Charge

Condition Field

Stationary -

Moving

E

EQ

B Field

 BEQ  v

Combination 

E Band

EQ

Force on charge in the influence of fields:

Force on a Moving Point Charge

• The electric force is usually in the direction of the electric field while,

the magnetic force is perpendicular to the magnetic field

• The electric force acts on a charged particle whether or not it is

moving, while the magnetic force acts moving charged particle only

• The electric force expends energy in displacing a charged particle,

while the magnetic one does no work when the particle is displaced

because it is perpendicular to the velocity

v

v

v
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Force on a Moving Point Charge

4.
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Force on a Differential Current Element

The force on a charged particle moving through a steady magnetic field may be written as the 

differential force exerted on a differential element of charge,

BdQFd  v 

dvdQ v and vvJ 

dvBJFd   

We saw in Chapter 8, part1 that J dν may be interpreted as a differential current element; that is,

and thus the Lorentz force equation may be applied to a differential current filament,

 BIdFd  
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Force on a Differential Current Element












dBI

BIdF

 -       

One simple result is obtained by applying (12) to a straight conductor in a uniform magnetic field,

(12)

The magnitude of the force is given by the familiar equation

BLIF 

sinBILF 

where θ is the angle between the vectors representing the direction of the current flow and the

direction of the magnetic flux density.

(13)
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Force on a Differential Current Element

Ex. 8.3: A square conductor current loop

is located in z = 0 plane with the edges

given by the coordinates (1,0,0), (1,2,0),

(3,0,0) and (3,2,0) carrying a current of 2

mA in anti clockwise direction. A

filamentary current carrying conductor of

infinite length along the y axis carrying a

current of 15 A in the –y direction. Find

the force on the square loop.

I1

I2
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Solution:

(1,0,0)

(1,2,0)

(3,0,0)

(3,2,0)

x
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2

15
ˆ

2
6

1

7-

101

1
1

z
x

HHB

z
x

z
x

I
H

-








Field created in the square loop due to 

filamentary current :

Force on a Differential Current Element
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Force on a Differential Current Element

5.
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The magnetic field at point P2 due to the filamentary current I1dl1 :
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We have :

where          is the force due to I2dl2 and due to the magnetic field of wire l2Fd

Force Between Differential Current Elements
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Integrate:
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For surface current :

For volume current :

Force Between Differential Current Elements
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Force Between Differential Current Elements

6.
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Magnetic Force between Two current Elements

By inspection of the figure we see that ρ = y and a = -ax.  Inserting this in the 

above equation and considering that dL2 = dzaz, we have

Now let us consider a second line of current parallel to the first.  

The force dF12 from the magnetic field of line 1 acting on a differential section of line 2 is

12 2 2 1
d I d F L B

The magnetic flux density B1 for an infinite length line of  current is recalled from equation 

to be 

1

1
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o
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1 1
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To find the total force on a length L of line 2 from the field of line 1, we must integrate dF12 from +L to

0. We are integrating in this direction to account for the direction of the current.

 
0

1 2

12

1 2

2

2

o

L

o

I I
dz

y

I I L

y









 



y

y

F a

a

This gives us a repulsive force. 

Had we instead been seeking F21, the magnetic force acting on line 1 from the 

field of line 2, we would have found F21 = -F12.

Conclusion:

1) Two parallel lines with current in opposite directions experience a force of 

repulsion.  

2) For a pair of parallel lines with current in the same direction, a force of 

attraction would result. 

a = -ax

ρ = y

Magnetic Force between Two current Elements
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In the more general case where the two lines are not parallel, or not straight, we could use the Law 

of Biot-Savart to find B1 and arrive at 

This equation is known as Ampere’s Law of Force between a pair of current carrying circuits and is 

analogous to Coulomb’s law of force between a pair of charges. 
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12
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Magnetic Force between Two current Elements
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Example: Find force per meter between two parallel infinite conductor carrying 

current, I Ampere in opposite direction and separated at a distance d meter. 

Solution:

2
B at position conductor 2

d

Ix

r

I
HB

c 








2

ˆ

2

ˆ
101

0202




(N/m)       
2

ˆ
2

ˆ

2

ˆ
)ˆ(

2

ˆ

2

021
0

1

0

10
2

10
2

1

0

22

d

I
y

d

II
y

d

Ix
dzzI

d

Ix
dIF

























 








 
  

Hence:
d

z

2
B

21
FI1

I2

I1 = I2 = I

x

y

Magnetic Force between Two current Elements
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+

_

VL

Coil

I

Magnetic 

flux

From circuit theory the induced potential across a wire wound coil such as solenoid or a toroid :

dt

dI
LVL 

where L is the inductance of the coil, I is the time varying current flowing through the coil – inductor.

Self Inductance

Inductance is the last of the three familiar parameters from 

circuit theory that we are defining in more general terms.

We can define the inductance (or self-inductance) as 

the ratio of the total flux linkages to the current which 

they link,

I

N

I
L







where (lambda) is the total flux linkage of the inductor

Henry
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In a capacitor, the energy is stored in the electric field :

In an inductor, the energy is stored in the magnetic field, 

as suggested in the diagram :
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Example: Obtain the expression for self inductance per meter of the coaxial cable when the

current flow is restricted to the surface of the inner conductor and the inner surface of the outer

conductor as shown in the diagram.

Solution:

a

b



The Φ will exist only between a and b and 

will link all the current I
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 
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Self Inductance
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Example: Obtain the self inductance of the long solenoid shown in the diagram.

Solution: Assume all the flux          links all N turns and that        

does not vary over the cross section area of the solenoid.
B
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Self Inductance
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 
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Example: Obtain the self inductance of the toroid shown in the diagram.
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Self Inductance
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Magnetic Energy Density
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Magnetic Energy Density
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Example: Derive the expression for stored magnetic energy in a coaxial cable with the length l

and the radius of the inner conductor a and the inner radius of the outer conductor is b. The

permeability of the dielectric is  .

(J)    ln
4
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

Magnetic Energy Density
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